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Abstract—In this paper, we address the challenging task of
whole-body biometric detection, recognition, and identification
at distances of up to 500m and large pitch angles of up
to 50°. We present an end-to-end system evaluated on the
challenging Biometric Recognition and Identification at Altitude
and Range (BRIAR) dataset. Our approach involves pre-training
the detector on common image datasets and fine-tuning it on
BRIAR'’s complex videos and images. After detection, we extract
body images and employ a feature extractor for recognition.
We conduct thorough evaluations under various conditions, such
as different ranges and angles in indoor, outdoor, and aerial
scenarios. Our method achieves an average F1 score of 98.29% at
IoU = 0.7 and demonstrates strong performance in recognition
accuracy and true acceptance rate at low false acceptance rates
compared to existing models. On a test set of 100 subjects
with 444 distractors, our model achieves a rank-20 recognition
accuracy of 75.13% and a TAR@1%FAR of 54.09%.

Index Terms—Body recognition, long-range biometric identifi-
cation, deep learning for biometric identification.

I. INTRODUCTION

INCE the introduction of YOLO [1], R-CNN [2], and
ResNet [3], object/person detection, and identification
based on deep learning has received extensive attention [4],
[51, [6], [7], [8], [9]. While body detection shares many
features of the general object detection task, it has addi-
tional challenges due to appearance changes, variations in
scale, acquisition conditions, and background clutter [10].
Body detection is useful in various applications, includ-
ing autonomous driving [11], search and rescue [12], [13],
and verification and recognition [14] based on biometric
information.
Compared with general object detection datasets (such
as COCO [15]), a key challenge of body detection task
is processing data acquired by cameras located at different
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angles, altitudes, locations, and ranges. Fig. 1 shows body
images acquired by cameras located at multiple ranges and
corresponding detection results. In some situations, human
bodies are even incomplete.

Although there is a vast number of works based on various
traditional algorithms [17], [18], [19], [20], [21], [22], [23]
to detect bodies, they do not perform well on data collected
at range and altitude. Deep learning methods [24], [25],
[26], [27], [28], [29], [30] can extract better features and
improve detection precision. While deep learning methods
have almost monopolized the area of object detection, they are
less explored for body detection. For example, among existing
methods, only a few [31], [32] have explored body detection
at high altitudes and long ranges.

Motivated by the aforementioned challenges, we present an
end-to-end approach that can detect, identify and recognize
human bodies at ranges up to 500m and pitch angles up to
50°. Our method requires the model to be pre-trained on a
small number of public datasets and then fine-tuned on the
BRIAR dataset. In both processes, the first stage of the model
extracts features and generates proposals. In the second stage,
the model detects the body based on these proposals. Finally,
the model generates features from body images cropped from
the detector. Our main contributions are:

o Our method synthesizes the features of public datasets
and BRIAR data so that the model can obtain good
representations without extensive training on large public
datasets or BRIAR.

« We explore body detection, identification and recognition
in detail at different altitudes, angles, scenes, and ranges.
The proposed method can detect, identify and recognize
human bodies under all these challenges with high
accuracy.

o Experiments show that our model can maintain an
F1 score of > 0.98 for BRIAR in almost all cases under
different IoU thresholds, as well as a rank-20 accuracy
of 90.36% and a TAR@1%FAR of 49.26% on the test
set with a large number of distractors, indicating that the
model is effective, robust, and stable at different ranges
and angles.

II. RELATED WORK
A. Body Detection

HOG [19] is one of the popular methods for body detection,
based on RGB and optical flow. Many follow-on works [18],
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Fig. 1.  Qualitative body detection results on the challenging BRIAR
dataset [16]. Compared with general datasets, the BRIAR data has many
challenges such as blur, occlusion, camera motion, and incomplete human
body. Left: original BRIAR datasets at altitudes and ranges. Right: Detection
results from our models. Red: ground truth. Other colors: detection results
from different models. All subjects consented to be published.

[20], [21], [23], [33] also used HOG to detect bodies.
Kamal and Jalal [34] detected occluded bodies using back-
ground subtraction. Khan et al. [35] used templates and 3D
modeling multi-person detection and occlusion. Liu et al. [36]
solved the problem of lighting and low-quality images by
cascading head and shoulder detection of HOG features. Most
of these methods did not take into account body movement,
whereas each subject in BRIAR would continuously move in
difficult scenes or stand still over a small number of frames.

Kim and Moon [24] utilized a CNN to directly extract features
and classify videos. Ouyang et al. [26] used a multi-layer
Restricted Boltzmann Machine (RBM) to extract features and
detect bodies at multiple levels, addressing challenges due to
occlusion and shadows. Zhang et al. [27] used a Faster R-CNN to
achieve more accurate and specialized body system. Li et al. [28]
replaced the CNN of Faster R-CNN by a dilated CNN to
achieve body detection at a lower resolution. Li et al. [37] and
Du et al. [29] fused features extracted by multiple R-CNN and
SSD, respectively, to detect bodies at arbitrary scales. However,
these methods have not been tested on datasets collected at
high altitudes and long ranges.

B. Recognition and Identification

Image and video-based methods for person identification
and recognition have been developed over the years. Several
image-based models [38], [39], [40], [41] have shown impres-
sive results on image-based benchmarks. More complex is the
video-based task, which still requires significant research [42],
[43], [44], [45], [46], [47], [48], [49], [50]. However, these
methods did not provide any solutions for the complex
acquisition conditions mentioned above, and their performance

significantly deteriorates at long ranges and high altitudes.
While some works addressed various difficulties, such as
different angles [51], [52], different poses [53], [54], [55], and
occlusions [56], [57], [58], [59], [60], [61], these methods were
not effective when clothing variations are present.

Recently, researchers focusing on human recognition have
paid attention to variations in clothing. These efforts mainly
fall into two categories: extracting clothing-independent fea-
tures from RGB images [62], [63], [64], [65] and using various
multimodal information [66], [67], [68], [69], [70], [71] to
extract features robust to variations in clothing. In the former,
the latest model is Gu et al.’s CAL [43], which used a clothes-
based adversarial loss to prevent the clothing classifier from
identifying the same person wearing different attire, thereby
extracting features that are not related to clothing.

In [72], the authors proposed a novel method comprising
of three key modules: a clothing-attention module to mitigate
clothing variations, a human semantic attention module to
enhance semantic details, and an identity enhancement mod-
ule focused on emphasizing pedestrian identity importance.
Han et al. [73] introduced an augmentation strategy using
a clothing-change covariance estimation method to identify
significant changes in clothing. They employed adversar-
ial learning to train an augmentation generator, ensuring
effective augmentation while minimizing identity alteration.
Additionally, they proposed an ID-correlated augmentation
strategy to increase intra-ID clothing variations and decrease
inter-ID variations. Yang et al. [74] introduced a causality-
based auto-intervention model that separates clothing bias
from identity representation using a dual-branch network.
Yang et al. [75] proposed SirNet, a network to learn distinct
feature embeddings from random samples without employing
hard mining strategies. In contrast to existing methods, SirNet
represents a sample from each identity as a cluster of points.
Additionally, the authors suggested a feature augmentation
technique to synthesize challenging samples.

Nguyen et al. [76] presented a method to extract body shape
cues using a Relational Shape Embedding branch and train
the network with contrastive viewpoint-aware loss (CVL). The
CVL aligns body shape feature embeddings under varying
viewpoints and enhances the discriminative capabilities of
appearance embeddings across different identities and view-
points. In [77], Huang et al. leveraged meta-learning to address
the domain shift between training and test sets due to changes
in clothing style. They proposed dividing the training set
into meta-train and meta-test subsets and simulating differ-
ent proportions of cloth-changing and cloth-consistent image
pairs. A calibration loss was used to reduce disparity between
cloth-changing and cloth-consistent types, and a ranking loss
enhanced the approach’s robustness.

In the realm of multi-modality, Jin et al. [68] used gait
information to identify the body, while Arkushin et al. [78]
used the face to identify the body. They have all achieved state-
of-the-art performance on LTCC at the time of publication.
However, they still have not solved the problem of directly
identifying persons from raw, complex video data or address-
ing challenges encountered in real videos, such as height,
long distances, and low resolution. Therefore, in our work,
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Fig. 2.

The body detector pipeline consists of two stages: pre-training on public datasets and finetuning on the BRIAR dataset to learn a general semantic

representation. Once the detector is trained, it is used to generate cropped body images from raw videos, which are utilized for recognition and identification.

we aim to simultaneously consider these challenges to achieve
good recognition performance across the varied acquisition
scenarios.

III. METHODS

The goal of this work is to implement robust detection and
recognition systems for whole-body-based biometrics using
datasets collected at different altitudes and ranges. As shown in
Fig. 3, our proposed BRIARNet model consists of a detector
and a feature extractor stage. The training process is outlined
as follows: a) Pre-training the detector on public datasets,
b) Fine-tuning the detector on the BRIAR dataset, and finally
c) Training the feature extractor on the BRIAR dataset.
During inference, given a frame, the detector network (Fig. 2)
identifies the location of the person and outputs a bounding
box. The cropped body images are then passed through the
feature extractor (Fig. 3) to produce semantic features, which
are subsequently used for identification.

Detector pre-training: Fig. 2 shows the architecture of the
person detector model. Specifically, it is based on Faster
R-CNN [6] and ResNet-50, and learns the common features of
public datasets and the BRIAR dataset. Initially, we pre-train
the detector on publicly available datasets, COCO [15] and
Visym [79], to obtain initial body feature information (more
details are provided in Section IV-A). Given an input X ¢
REXH*W which is sampled from public datasets, where C is
the channel size, H and W are height and width respectively,
we extract features X;’ from it with a feature extractor f. X;)
can be multiple layers when the Feature Pyramid Networks
(FPN) [8] is used. Then, we use Region Proposal Networks
(RPN) [6] to calculate a proposal b € R* and its objectness
score of € R? for Xf . b* and of each have a loss. For b’

RPN calculates its smoothed ¢ loss [5] as

bP—bP N
(2,3 ) if |bP—bF| < B
|bP —bP| — g, otherwise

h = ey

where bF is the ground truth bounding box, B is smooth
threshold. For of, RPN calculates its binary cross entropy

loj = —[0" logo” + (1 — 0") log(1 — 0”)] )

where 0" is the label of whether there is an object in
the current proposal. Finally, the ROI head calculates the
probability that the proposal belongs to a certain class. Since
we target the specific class of body, we only have two classes
in our approach, person and background. This part is also
updated with binary cross entropy loss lge;. The total loss is

3

Detector finetuning: After pre-training on public datasets,
we fine-tune the model on the BRIAR dataset. For BRIAR’s
input X2, the fine-tuning process is the same as was used for
the public dataset. We train on multiple public and BRIAR
datasets to obtain more synthesized features. However, the
sizes of different datasets are quite different. In order to allow
the model to sample more evenly, especially focusing on
datasets with small sizes, a sampling strategy is employed.
Assuming that dataset d; has |d;|] images or videos, the
probability that a certain image or video is sampled from
this dataset is ﬁ Its final overall sampling probability is
normalized on all datasets. Since the size of BRIAR is small
at some ranges (e.g., 500m), this is crucial to improving
the overall performance on the BRIAR data. Each video is
sampled and then a fixed number of frames is uniformly taken

P

L =1 + lopj + laer
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Fig. 3. The pipeline of the recognition model. We leverage an inclusion strategy to make sure the model can deal with images and videos simultaneously.

to form X. All X go through a series of augmentation before
fed to the feature extractor.

Feature extractor training: Fig. 3 shows the pipeline of the
recognition model. We use ResNet-50 [3] with 3D convolution
blocks as the backbone network. Unlike the detector, we train
the feature extractor network from scratch using only the
BRIAR dataset (See Section IV-B for more details on the
network architecture and training sampling strategy). The input
to the recognition model is Xgee € REXCXTXHXW ‘\which is the
body image sequence cropped from the detector, where T is the
length of the time dimension. We adopt a strategy of sampling
n people in each batch and k videos for each person, so that
B = nk. On the other hand, since videos are often longer
(~ 2k to 3k frames per video), it is computationally inefficient
to directly load all the frames of each video. Furthermore,
there is a lot of redundant information in successive frames.
Therefore, we take one frame for every fixed stride. Since
the length of each video is inconsistent, in order to ensure
that all video frames in a batch are of the same length, we
also record the index of valid frames of each video. If the
length of a video exceeds T, we directly take a random frame,
and feed consecutive T frames to the extractor. Otherwise,
we zero pad to make it 7. Since each person has controlled
images of simple situations (such as images of standing
indoors), in addition to complex videos, we also include these
images during training. These images are equivalent to a video
with a length of 1, so we zero pad them. The extractor
ultimately outputs XREC e RBE*4 features, where d is the
feature dimension. Finally, we calculate the I and lyair of
the feature to achieve re-identification, where I is the cross
entropy of subjects, and [y is the triplet loss [80]. The final
loss is,

Erec = lgs + lpair 4

We propose an inclusion strategy to enable a unified model
capable of processing both image and video inputs. This strat-
egy involves extracting temporal features when handling video

inputs, while ensuring independence of the time dimension for
2D images. Initially, a batch of images is conceptualized as
a batch of videos with each video containing a single frame.
This approach allows us to employ a consistent architecture for
handling both spatial and temporal features. When processing
image batches, where the temporal dimension 7 is 1, temporal
operations are bypassed, focusing solely on spatial operations.
In contrast, video batches undergo both temporal and spatial
operations. Consequently, our model guarantees that image
inputs retain only spatial information, while video inputs
incorporate both spatial and temporal information.

It is important to note that our inclusion strategy is not tied
to specific layers or modules, but rather a flexible approach
applicable to various layers and modules within neural network
architectures. In our experiments, we applied the inclusion
strategy to convolutional, pooling, and batch normalization
layers, demonstrating its versatility and effectiveness across
different components of the model.

IV. EXPERIMENTS
A. Datasets

BRIAR: The BRIAR dataset [16] consists of images and
videos of people moving in various situations, and is divided
into face and whole body. The entire dataset has > 350, 000
images and 1, 300 hours of videos. A total of 1000 subjects
participated in the production of the entire dataset. Specifically,
the BRIAR data can be divided into multiple datasets accord-
ing to different altitudes, ranges, environments, and actions.
The BRIAR data has three environments: indoor, outdoor
and aerial (Fig. 4). The camera in the indoor environment is
in a relatively fixed position, and various interferences will
be relatively small. Therefore, indoor images and videos are
relatively good for training. The indoor subjects have two
kinds of movements. First, each subject walks along a preset
and then walks randomly in the same area. These movement
patterns constitute two datasets, struct and rand. In addition
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Fig. 4.

BRIAR'’s structure tree. Each experimental field has some colored lines. struct requires subjects to walk along these lines, while in rand subjects

walk freely. Note that the data for outdoor environments is the most complex. All subjects are smaller due to acquisition at large range. 200m videos pose
challenges due to occlusion. A considerable portion of 500m subjects is at the very bottom or even the corner of frames. Furthermore, a large number of
outdoor videos suffer from camera shake regardless of ranges, and the shake increases significantly as camera range increases. These issues make robust
detection on BRIAR data challenging. All images shown have subjects who have given consent.

to the normally collected data, there is also a dedicated
indoor distractor dataset. This dataset is full of images that
are processed under various perturbations or scenarios that
differ from the training set, which is equivalent to “physical”
augmentation.

Datasets for the outdoor environment are more complex.
According to different camera ranges, the outdoor data is
divided into four datasets: 100m, 200m, 400m, and 500m.
Since interferences such as outdoor ambient light and occlu-
sion are much stronger in outdoors, these datasets usually
challenge the detector. The quality of outdoor videos is
significantly lower than indoor videos (Fig. 4). Therefore,
our sampling strategy can focus more on feature learning in
difficult outdoor environments. Finally, for aerial data, based
on different altitudes and angles, BRIAR data can be divided
into close range and Unmanned Aerial Vehicles (UAV), where
close range represents aerial videos near the ground, and UAV
represents aerial videos with higher altitudes. Both outdoor
and aerial data have struct and rand actions. Fig. 4 shows the
structure of BRIAR data as a tree.

The annotation information for BRIAR data includes vari-
ous attributes of subjects such as birth date, gender, weight,
etc. and ground truth bounding boxes. In our experiments, we
only need the bounding boxes. We used data from the whole
body part. The details on all datasets of BRIAR we use in this
paper is shown in Table L.

COCO and Visym: For public datasets, we mainly use
COCO [15] and Visym [79]. COCO is one of the most classic
datasets for object detection tasks, with the advantages of
large size and various classes. Visym is a large public dataset

TABLE I
THE TRAINING AND TEST SET VIDEOS OF BRIAR
DATASETS USED IN THIS PAPER

Dataset Training  Test
struct 2,268 1,225
rand 2,257 1,208
100m 729 382
200m 887 486
400m 767 351
500m 695 407
close range 3,553 1,843
UAV 119 75

dedicated to people, with millions of video clips of hundreds
of human activities. Since one of our goals is to reduce the
training costs while at the same time learn the representations
of BRIAR datasets faster, we only extract very few images
from COCO and Visym (at least two orders of magnitudes
smaller than the full datasets). Specifically, for COCO, we
selected 567 and 64 images with clear bodies as training and
test sets, respectively. For some of the images, we manually
re-labeled the bounding box. For Visym, we selected 10,430
and 1,064 images from videos of people walking as training
and test sets. Section I'V-C shows that with just this of publicly
available datasets, our fine-tuned model’s results on BRIAR
are comparable to pre-trained models trained on full COCO.

B. Model Settings

We mainly use Faster R-CNN [6] based on three model
settings: pre-trained (PRE), fine-tuned (FT), and from scratch
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(SCR). Among them, the pre-trained model refers to the model
trained only on public datasets we choose, without any BRIAR
information. The fine-tuned model refers to fine-tuning on the
BRIAR dataset after the previous pre-trained model is trained,
and the scratch model refers to a model that is directly trained
on the BRIAR dataset without using the public dataset. We
compare all models to pre-trained Detectron 2 (DET2) [81].
During training, all models first sample videos according to the
sampling strategy discussed in Section III, and then randomly
select five frames from each video. At test time, for each
video in the test set, we sample frames at fixed time intervals.
Therefore, the number of frames taken by each video is
different. In order to balance the number of frames taken for
each dataset and speed up the test, time intervals in different
datasets are set at different values. For struct, rand, and close
range, we take one frame for every 300 frames (~10s, if FPS
= 30). For other datasets, models take one frame every 150
frames. Since the BRIAR data is about 1 - 2 minutes per
video, at the end about 10 - 20 frames remain. We use the
F1 score as the final evaluation metric. Data augmentations
include grayscale (p = 0.25), brightness, saturation, contrast,
horizontal flip (p = 0.5), and RGB shift (p = 0.3, limit = £30
RGB values).

The body detector of our model is based on ResNet-50 [3]
and the 5-layer FPN [8]. The g of ¢; loss is é. The optimizer is
SGD with momentum 0.9. The initial learning rate is 0.00001.
There is £, regularization with a decay rate = 0.0001. The
pre-trained model needed about 11 min/epoch on 8x NVIDIA
RTX A5000 GPUs. Fine-tuned and scratched models took
about 3 hours per epoch on 7x GeForce RTX 3090 or 6x
A5000 GPUs. The fine-tuned model was finally trained for ten
epochs, while the scratch model was trained for twenty-five
epochs. A batch size of 1 was used for each GPU. We also
compare performances with the Faster R-CNN implementation
of Detectron2 (DET2) [81] based on complete COCO training.
We adopted the model that was closest to the structure of our
current model.

The recognition model we used is built using ResNet-50
with 3D convolution blocks. We used the optimizer Adam with
an initial learning rate of 1 x 10™*. Additionally, we applied
¢, regularizer with a decay rate of 5 x 10™*. The batch size
is 16, which corresponds to 4 people x4 videos per person.

C. Results

1) Detection in Indoor: We discuss the performance of
each model under different altitudes and ranges according to
the situation. Table II shows the F1 score of all models in
indoor struct and rand under different IoU thresholds. Since
the indoor situation is the simplest in BRIAR and closest to
the situation of public datasets, this comparison can directly
reflect the preliminary performance of each model. First, under
all ToU thresholds, fine-tuned, scratch, and Detectron2 models
achieve almost similar and excellent performance (> 98% of
F1 score), while the pre-trained model is not as good as the
other three, although it also reached > 90% of F1. Since the
pre-trained model has no BRIAR information and only has
a small part of public datasets, even some of the simplest

TABLE 11
F1 SCORE COMPARISON IN INDOOR DATASETS OF BRIAR UNDER
DIFFERENT 10U THRESHOLDS. Low IoU WILL HELP MODELS DETECT
BODIES, BECAUSE NOW A PROPOSAL IS MORE LIKELY TO BE ASSIGNED
AS A TRUE BOUNDING BOX. HOWEVER, IT WILL ALSO INCREASE THE
FALSE POSITIVE RATE BECAUSE NOW ANY PROPOSAL IS MORE LIKELY
TO BE ASSIGNED A TRUE BOUNDING BOX. FOR HIGH IoU, THE
PHENOMENON IS THE OPPOSITE

0.35 0.5 0.7
model | struct rand struct rand struct rand
PRE 91.84 97.15 91.76 97.07 86.34 94.43
FT 99.13 99.82 99.11 99.81 98.73 99.60
SCR 99.17 99.91 99.17 99.91 98.80 99.85
DET2 98.77 99.94 98.77 99.94 98.67 99.91

indoor cases are not detected. Correspondingly, the Detectron2
trained on the complete COCO achieves similar performance
to fine-tuned and scratched models. This basically shows that
for datasets with more variations, either specific training for
its features, or training on large public datasets to obtain an
overall feature distribution, is required.

On the other hand, the performances of the fine-tuned,
scratched, and Detectron2 models are very stable and do not
change much with IoU. This shows that the bounding boxes
predicted by these three models are relatively close to the
ground truth. In contrast, the performance of the pre-trained
model drops significantly under high IoU thresholds, which
shows that its prediction is only a rough estimate, and the body
has not been accurately localized. Furthermore, all models
perform better on rand than struct. We believe this may be
because in the rand situation people show multiple angles in
front of cameras, while in struct mode view angles are very
limited. Such differences may cause models to better recognize
rand patterns (see Fig. 5 for comparison).

2) Detection in Outdoor: Table III shows the F1 score of
all models in different outdoor ranges under different IoU
thresholds. First, the three models of fine-tuned, scratch, and
Detectron2 have similar, excellent, and stable performance
(> 98% of F1) in the cases of 100m, 200m, and 400m,
while the performance of the pre-trained model in outdoor
is significantly lower than for indoor. This validates the
conclusions found in indoor datasets. Second, except for 100m,
all models in other ranges show that the performance decreases
as the range goes farther. The performance of models at 200m
is better than that of 100m. This may be because grayscale
helps models to distinguish distinct frames, although it also
blends the body and background in few frames. In addition,
as the IoU threshold increases, the performance of models at
100m is significantly more stable than that at 400m and 500m,
which is in line with the findings between interference and
range mentioned above.

When the IoU threshold is not high, the fine-tuned model
and scratch model are better than Detectron2 at 200m and
400m. But when the IoU threshold is high, the former is
worse than the latter. This shows that models with BRIAR
information tend to find the matching pattern first, and
then consider localization, while models without BRIAR
information behave just the opposite. This difference strongly
illustrates the influence of BRIAR information on models
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Except for some extreme cases, models with BRIAR information can accurately detect the body on each dataset. This shows that our methods

Fig. 5.
successfully address the challenges in processing the BRIAR dataset.
TABLE III
F1 SCORE COMPARISON IN OUTDOOR DATASETS OF BRIAR UNDER DIFFERENT I0U THRESHOLDS
0.35 0.5 0.7

model 100m 200m 400m 500m 100m 200m 400m 500m 100m 200m 400m 500m
PRE 93.19 88.53 87.01 82.09 93.02 88.41 86.77 81.97 90.55 85.06 82.57 76.57
FT 98.90 99.74 99.15 96.78 98.71 99.69 99.10 96.49 98.05 98.70 97.90 94.53
SCR 98.91 99.76 99.32 97.18 98.82 99.71 99.32 97.00 98.44 99.08 98.70 94.80
98.18 99.22 99.30 98.98 98.13

DET2 99.36 99.46 99.02 98.18 99.36 99.46 99.02

that at longer ranges, even if the model has the corresponding
feature learning ability, if the body is too small or blurred, it is
difficult to provide useful information to the model. However,

about learning body features. Finally, we notice that the fine-
tuned model and the scratch model have significantly lower
performance than Detectron2 at 500m, which further shows
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TABLE IV
F1 SCORE COMPARISON IN AERIAL DATASETS OF BRIAR
UNDER DIFFERENT I0U THRESHOLDS

0.35 0.5 0.7
model | close UAV close UAV close UAV
range range range
PRE 94.75 70.45 94.69 69.48 91.81 61.14
FT 99.39 99.51 99.39 99.43 98.73 96.99
SCR 99.36 98.93 99.36 98.93 98.91 97.35
DET2 99.19 98.50 99.19 98.50 98.88 98.39
TABLE V

AVERAGE F1 SCORE COMPARISON IN ALL BRIAR DATASETS
UNDER DIFFERENT 10U THRESHOLDS

model 0.35 0.5 0.7

PRE 89.57 | 89.46 | 86.10
FT 99.00 | 98.94 | 98.11
SCR 98.94 | 98.90 | 98.29
DET2 99.14 | 99.14 | 98.97

considering that the fine-tuned model achieves comparable
performance with the scratched model and Detectron2 while
using very little public dataset information, we claim that
our method is efficient and accurate for various scenarios of
BRIAR.

3) Detection in Aerial Data: The case of videos collected
at altitude is relatively easier. Compared to outdoor results,
all models have better performance on aerial video data
(Table IV). This may be due to two reasons. First, in aerial
datasets, subjects have less occlusions and incomplete bodies
(Fig. 4, Fig. 5). Second, aerial cameras cover a large area
of the ground. Subjects are less likely to fall out of camera
range. These reasons make it possible for models to learn
features more effectively in aerial situations. It can also be
seen from the results at different IoU thresholds that all models
are more stable on aerial than outdoor datasets. In summary,
on aerial datasets, the fine-tuned model, scratched model and
Detectron2 can all achieve ~ 97+% of the F1 score.

We finally show the average results of all models in Table V.
Note that the average results here are not a simple average
of all previous results, but the F1 score of models tested
on all BRIAR datasets. It can be seen that the fine-tuned
model, scratched model and Detectron2 basically have similar
performances. This suggests that our method does not require
pre-training on massive public datasets, nor training on the
BRIAR datasets for a long time from scratch, and can achieve
an average of 99% of F1. Features learned by the fine-tuned
model are sufficient to support downstream applications (such
as verification, identification, recognition, etc.).

D. Visualizations of Detection Results

Fig. 5 shows the detection results of different models in
consecutive video frames for each dataset. For many datasets,
the pre-trained model has produced a large number of false
negatives (such as the fan of images 1-2 in struct, the cone
of images 2-4 in close range) and failures (such as in image
2 in 100m it did not detect the body). The fine-tuned model
and the scratched model are more performant. However, for
many corner cases, a degradation in performance is observed.
For example, the subject image 3 in struct has hairs only on

the back of the head and blends into the background rather
well. At this time, except for the ground truth (red), the naked
eye may not be able to accurately determine where the hair
region is. Nevertheless, apart from these corner cases, it can
be seen that in most indoor, outdoor and aerial scenarios, both
the fine-tuned model and the scratch model can detect bodies
well. This illustrates the effectiveness of our method.

Models that learn BRIAR information can produce
extremely accurate detections in some cases. For example, for
image 4 at 500m, the entire subject only occupies dozens of
pixels in the corner of the image. For image 4 in UAYV, the
subject has only legs visible. However, the fine-tuned model
can still accurately find the body in these cases, and the
difference from ground truth is very small. In summary, using
both the generality of the public dataset and the specificity
of BRIAR, models can be trained quickly on both sides and
learn a more robust representation. This may be very helpful
to address the domain shift problem of representation.

E. Recognition and Identification Performance

Table VI presents a performance comparison of our model
with DME [32] and CAL [43] on protocol 1. The primary
metrics used for comparison are the accuracy of different ranks
and the TAR under different FARs. Protocol 1 consists of
a total of 185 subjects, including 100 distractors. The key
differences among our models are as follows. Model 2 has a
larger gallery size and a more difficult gallery than model 1,
as it has more controlled images. Model 3, on the other hand,
is trained on more challenging situations, including 270m,
370m, 490m, 600m, 800m, and 1000m. Additionally, model 3
is trained on face data simultaneously. Although face data may
only include a partial body or even only a head, we included
it in the training. It is evident that regardless of the model
version, our models have achieved substantial performance
improvements compared to CAL. Table VII presents a com-
parison of our results on the more challenging Protocol 2.
This protocol consists of a total of 544 subjects, 444 of
which are distractors. Despite the large number of distractors,
our model achieves an accuracy of 73.30% at rank-20 and
a TAR@1%FAR of 53.77%, demonstrating the effectiveness
of our method for complex situations. Furthermore, model 2
outperforms model 1, while model 3 has achieved the highest
performance, demonstrating the robustness of our model.

Tables VIII and IX summarize the performance compari-
son between state-of-the-art models and our models. Since
FarSight [31] is a synthesized model of body, gait, and face, we
only compare with their pure body version for a fair compari-
son. Under the same setting, our model has better performance
than state-of-the-art methods. Considering that the backbone
of both models is ResNet-50, this suggests that backbones
decide the lower bound of the representation ability of bodies.
On the other hand, BRIARNet has better rank-20 accuracy,
while FarSight is slightly better in TAR. This suggests that
different strategies focus on improving different aspects of
representations, thereby moving to different upper bounds. A
pure RGB feature representation (BRIARNet) tends to cluster
similar identities, while 3D modeling (3DInvarReID [82] in

Authorized licensed use limited to: Johns Hopkins University. Downloaded on October 12,2025 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: WHOLE-BODY DETECTION, IDENTIFICATION AND RECOGNITION AT ALTITUDE AND RANGE

339

TABLE VI
PERFORMANCE COMPARISON OF OUR MODEL (BRIARNET) WITH STATE-OF-THE-ART ON PROTOCOL 1, BASED ON THE ACCURACY OF DIFFERENT
RANKS AND THE TRUE ACCEPT RATE (TAR) AT DIFFERENT FALSE ACCEPT RATES (FAR). PROTOCOL 1 HAS 85 SUBJECTS AN 100 DISTRACTORS.
SINCE BRIAR HAS BOTH FACE AND WHOLE BODY DATA, “WITH FACE” INDICATES WHETHER THE MODEL IS TRAINED WITH FACE DATA
(Y) or NOT (N). ALL RESULTS IN THIS PAPER CORRESPOND TO FACEINCLUDED PROTOCOL [16], [31]. THE “INPUT TYPE”
INDICATES WHETHER THE MODEL USES IMAGES (I) AND/OR VIDEOS (V)

With  Input Accuracy TAR@FAR
model Face Type | Rank-1 Rank-5 Rank-10 Rank-20 | 0.01% 0.1% 1% 10%
DME [32] N \ 24.23 51.49 64.02 74.37 0.02 0.02 215 2297
CAL [43] N I 20.92 42.34 54.45 66.78 0.03 070 513 28.28
N I 36.66 66.86 78.98 87.59 279 1113 3569 7128
BRIARNet N I+v 29.85 58.83 68.07 77.65 1.85 832 3254 7310
Y I+V 46.67 73.75 82.51 90.36 413 1597 49.26 86.78
TABLE VII

PERFORMANCE COMPARISON OF OUR MODEL ON PROTOCOL 2. PROTOCOL 2 PRESENTS A MORE CHALLENGING TASK THAN PROTOCOL
1 DUE 1O ITS 100 SUBJECTS AND 444 DISTRACTORS. NEVERTHELESS, OUR MODEL PERFORMED WELL,
DEMONSTRATING ITS EFFECTIVENESS IN DIFFICULT SCENARIOS

With Input Accuracy TAR@FAR
model Face Type | Rank-1 Rank-5 Rank-10 Rank-20 | 0.01% 0.1% 1% 10%
N I 12.18 24.27 25.72 37.17 2.24 794 2255 43.64
BRIARNet N I+V 11.84 24.42 30.95 38.28 1.75 845 2273 48.03
Y [+V 34.84 55.93 64.70 73.30 6.61 2490 53.77 83.03
TABLE VIII

PERFORMANCE COMPARISON OF OUR MODELS WITH
STATE-OF-THE-ART ON PROTOCOL 2. THE “BRS” COLUMN INDICATES
WHICH DATASET WAS USED FOR TRAINING, I.E., DIFFERENT
TRAINING SUBSETS DEFINED IN [16]

model With Input BRS Rank-20 1% FAR
Face Type

CAL [43] Y I+V 1,2 71.18 51.87

FarSight [31] Y I+V 1,2 7291 54.00
N I 1,2 37.17 22.55
N I+V 1,2 38.28 22.73

BRIARNet 1+V 12 7330 5377
Y I+V 1,2,3 75.13 54.09

TABLE IX

QUANTITATIVE COMPARISON BETWEEN PROPOSED METHOD,
BRIARNET AND EXISTING APPROACHES ON BRIAR PROTOCOL 2. THE
BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods (1) Rank TAR @ z% FAR
1 5 10 20 z=1xz=10
CDNet [83] 7.05 19.82 30.27 41.66 15.80 54.55
CtF [84] 9.51 31.73 42.75 54.95 23.60 60.20
TransRelD [85] 25.03 49.90 60.81 70.30 50.00 81.00
DC-Former [86] 27.98 50.46 62.28 72.94 49.38 84.51
PFD [87] 32.92 55.55 65.80 75.73 47.97 71.22
CAL [43] 19.72 43.64 54.02 64.94 38.50 74.68
BRIARNet 34.84 56.95 66.33 75.13 54.09 89.03

FarSight) tends to recognize the same identity. Besides, adding
more data improves all metrics. Compared with our models
from Tables VI to VIII, models trained with face images,
videos, and various scenarios are better than models trained
without them. Among them, face information is essential for
good RelD.

To the best of our knowledge, there has been no com-
prehensive public report on whole-body recognition results
for Protocol 3. In response, we present an evaluation of
BRIARNet’s performance on Protocol 3. Protocol 3 comprises

two galleries: Gallery 1 consists of 134 subjects and 351
distractors, while Gallery 2 contains 130 subjects and 351
distractors. In Fig. 6, we display the performance curves of
BRIARNet for both galleries. The FNIR denotes the fraction
of failed mate searches that exceed a predefined thresh-
old [88], serving as a metric for assessing open-set recognition
performance. Specifically, on gallery 1, BRIARNet reaches
33.2%1/61.0%/71.8%/80.2% rank-1/5/10/20 accuracy, which is
higher than the SOTA method by 4.5%/6.2%/7.4%/5.3%.
It is evident that BRIARNet’s performance on the CMC
curve remains largely unaffected, and in some cases, it
even improves. Furthermore, even when confronted with a
substantial number of distractors, BRIARNet demonstrates
commendable open-set recognition capabilities (FNIR is
~90% when FPIR > 1%). In summary, our method has com-
parable performance to the SOTA method on most challenging
open-set evaluation, and outperforms it significantly on rank-k
accuracy.

We aim to assess the model’s performance across various
signature sets (sigsets), as illustrated in Fig. 6b. Five distinct
sigsets available for extensive evaluations. Firstly, images are
classified into Face Included (FI) and Face Restricted (FR)
based on the visibility of the front face. Next, the BRIAR
dataset exhibits natural grayscale variations and physical
turbulence across a wide range of distances, presenting sigsets
like Long-range Body (LB) and Long-range Turbulence (LT).
Images captured from high altitudes by drones constitute the
UAV sigset.

The evaluation focuses on rank-1, 10, and 20 for three
sigsets. BRIARNet consistently outperforms CAL across most
sigsets in rank-1. In FI, FR, LB, and LT, BRIARNet surpasses
CAL by more than 5%, highlighting its robustness in scenes
without faces, over long distances, and in the presence of
severe turbulence. Notably, CAL leads BRIARNet in UAV,
suggesting its suitability for recognizing high-altitude scenes.
However, in rank-10 and rank-20 sigsets, BRIARNet maintains
its lead in the first four sigsets while closing the gap in
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(a) Protocol 3 - Gallery 1 and Gallery 2 results

Fig. 6.

(b) Sigset results

(a) The performance curves of BRIARNet and CAL for both galleries on protocol 3. BRIARNet have >= 80% rank-20 accuracy, which is

even higher than protocol 2’s results. Besides, we also provide results of FNIR vs FPIR here as reference for other works in open-set recognition setting.
(b) Sigset evaluation of two methods. FI, FR, LB, LT, UAV represent Face Included [16], [31], Face Restricted [16], [31], Long-range Body [16], Long-range
Turbulence [16], Unmanned Aerial Vehicle [16], respectively. These results show the robustness of BRIARNet.

TABLE X
COMPARISON OF MODEL SIZE (IN MILLIONS) AND INFERENCE TIME (IN
MILLISECONDS) ACROSS DIFFERENT METHODS FOR A IMAGE OF
SIZE 256x 128 ON A NVIDIA A5500 GPU

Methods TransReID CDNet CtF DC-Former PFD CAL Ours
) (851 (831 (841  [s]  [87] I42]

Params 62.1 26 243 49.5 162 235 247
Time 23.2 212 409 20.6 284 299 382

UAV and eventually surpassing CAL by more than 10%.
This underscores the overall effectiveness and robustness of
BRIARNet across diverse scenarios. Also, in Table X, we
provide the inference time and model size (in number of
parameters) comparisons with other existing methods.

While the inference time (Table X) for our method is some-
what higher than others, such as DC-Former and CDNet, the
notable improvement in recognition performance justifies this
trade-off. Faster methods exhibit significantly lower accuracy,
highlighting that BRIARNet offers a more favorable balance
between speed and performance. The additional computational
time in our method stems from steps that enhance robust-
ness and accuracy, especially in challenging scenarios. Our
method is specifically designed to handle complexities such
as distances up to 500m, large pitch angles, severe turbulence,
and varying environmental conditions — areas where faster
models often fail. Furthermore, BRIARNet achieves superior
recognition rates (as shown in Tables VIII and IX) and
demonstrates robustness across diverse datasets, offering a
compelling trade-off between speed and performance quality.

We believe this trade-off is reasonable in practical applications
where accuracy is paramount.

V. CONCLUSION

In this paper, we present the results of an end-to-end system
for body detection and identification on real-world datasets,
including the BRIAR dataset, under various altitudes and
ranges. Our method generates features from public datasets
and BRIAR, allowing our models to achieve high performance
without exhaustive training on large datasets. By pre-training
on a small number of public datasets and fine-tuning on
BRIAR, our models can achieve 98% F1 score within 10
epochs. Additionally, our model achieved an accuracy of
75.13% and a TAR@1%FAR of 54.09%, outperforming state-
of-the-art recognition and identification models. Experimental
results demonstrate that models obtained through fine-tuning
can maintain robust performance under different altitudes,
ranges, environments, and actions.
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