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Abstract

Gait recognition holds the promise to robustly identify sub-
jects based on walking patterns instead of appearance in-
formation. In recent years, this field has been dominated
by learning methods based on two input formats: silhou-
ette images and sparse keypoints. Compared to image-
based approaches, keypoint-based methods can achieve sig-
nificantly higher efficiency due to their sparsity. However,
sparsity also results in information loss, thereby reducing
performance. In this work, we propose a novel, keypoint-
based Contour-Pose representation, which compactly en-
codes both body shape and parts information. We further
propose a local-to-global architecture, called GaitContour,
to leverage this novel representation and efficiently compute
subject embedding in two stages. The first stage consists
of a local transformer that extracts features from five dif-
ferent body regions. The second stage then aggregates the
regional features to estimate a global human gait represen-
tation. Such a design significantly reduces the complex-
ity of the attention operation and improves both efficiency
and performance. Through large scale experiments, Gait-
Contour is shown to perform significantly better than pre-
vious keypoint-based methods. Furthermore, the Contour-
Pose representation also achieves new SoTA performances
on fusion-based gait recognition methods.

1. Introduction

Unconstrained biometric identification, especially in out-
door and long-range situations, has been a longstanding
challenge [36, 39, 51, 52]. While RGB-based face and body
recognition systems focus on learning spatially discrimina-
tive features, real-world effects like challenging viewpoints,
low face resolution, changing appearances (e.g., clothes
and glasses), etc., can significantly affect model perfor-
mance [27, 28, 47]. Gait analysis employs an alternative
modality for human recognition by learning discriminative

Silhouette Pose CP

Computation High Low Low
Format Image Keypoint Keypoint

Body Shape ✓ ✗ ✓
Size 64 × 64 17 × 2 165 × 2

Model GaitBase [14] GPGait [17] GaitContour
Parameters 7.30M 7.93M 0.66M ↓×10+

Figure 1. Comparison of our proposed Contour-Pose and other
gait representations. The size of bubbles denotes the number of
parameters. GaitTR w/CP represents extracting Contour-Pose(CP)
feature through GaitTR. GaitContour achieves a good balance be-
tween efficiency and accuracy.

features extracted from human walking patterns. It can be
more robust in challenging, unconstrained situations, where
color-space information is unreliable due to turbulence, and
has been deployed in many applications including human
authentication [4], health [11], crime analysis [20], etc.

Research on gait analysis has a long history [37, 39]. The
more recent developments in this field are based on deep
learning methods, where the format of inputs to the neural
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network can be roughly categorized in two ways: silhouette
images and keypoints. To extract discriminative features
from these two types of data, models of different complex-
ities are applied. Previous works mainly focus on the per-
formance differences from a modality perspective, such as
silhouette, keypoints, or multi-modal. This study analyzes
the models’ efficiency and effectiveness tradeoff by using
different representations, which is crucial for assessing the
implementation cost in real-life applications.

Gait image sequences, which capture human motion as
a series of 2D binary silhouettes or skeleton maps, are typ-
ically processed by large CNN models. Relying on dense
representations, these models require significant computa-
tions to generate effective features, which often lead to a
latency of 80-100ms. Such cost makes image-based gait
recognition less favorable compared to face and body recog-
nition, which takes around 10-20ms, despite its advantages
in privacy preservation and performance.

Pose keypoints are predefined semantic points extracted
from human images and magnitudes smaller in input size
than images. Such smaller dimensionality offers several
benefits, including smaller models, faster processing, and
smaller template sizes (the identification vectors generated
by the model), However, the reduced accuracy of keypoint-
based models is a major bottleneck. If keypoint-based mod-
els can achieve competitive performance, they can enable
broader downstream applications, e.g., gait recognition in
low-power, efficient systems with real-time demands.

Considering the advantages and disadvantages of the two
gait representations, we pose this question: can we use
slightly denser keypoints to represent human movement and
improve keypoint-based models’ performance? Based on
the success of the image-based models, we argue that body
shape also plays a significant role in gait recognition. As
such, it can be beneficial to extract more keypoints around
the contour of a human to complement semantic human
poses. To this end, we propose a novel gait representa-
tion called Contour-Pose, as illustrated in Fig. 1. We com-
pactly represent the human body shape using a series of
contour points around the silhouette, e.g., approximated by
Teh-Chin algorithm [43]. However, naively using contour
points cannot achieve good performance due to the incon-
sistent correspondence and ordering between frames. To
address this issue, we draw inspiration from the blend skin-
ning process in building the Skinned Multi-Person Linear
Model (SMPL) [31], where the final skin vertex locations
are highly correlated to the joint centers. We use pose key-
points as anchors to select relevant contour points. Specif-
ically, for every pose keypoint, we select a few close con-
tour points to form a connected graph in a clockwise fash-
ion, simulating the SMPL skinning process in a 2D style.
Together, this contour-pose representation compactly repre-
sents the semantic regions of the human body and its shape.

Compared to the typical silhouette, our Contour-Pose rep-
resentation is an order of magnitude smaller in dimension.

When used in place of conventional pose keypoints,
Contour-Pose can already improve the performances of
prior keypoint-based gait recognition models [41, 42, 49].
However, these models are designed for sparse pose key-
points, and incur higher computational costs due to the
larger amount of point inputs in Contour-Pose and the
quadratic complexity of Transformers, which are com-
monly used in motion analysis [3, 35, 49]. Our analysis
reveals that a significant portion of the computation in a
Transformer is dedicated to relationships that are not usu-
ally pertinent, e.g., there is little correlation between the
contour points surrounding the head and legs.

In light of this consideration, we propose GaitContour,
a Transformer-based method that is designed in a local-
to-global fashion to maximize performance and efficiency.
GaitContour operates in two stages: a Local Contour-
Pose Transformer (Local-CPT), and a Global Pose-Feature
Transformer (Global-PFT). As contour points are defined
with respect to keypoints, we propose a Local-CPT to ex-
tract local features of the specific regions using shared
weights. This design reduces the number of model parame-
ters and allows for sharing the general low-level features.
Local-CPT’s outputs are aggregated to form global key-
point features. The Global-PFT focuses on this sparse set
of global keypoint features to generate human IDs.

As shown in Fig. 1, GaitContour achieves a significantly
better efficiency-performance trade-off based on richer in-
formation and tailored architecture design, compared to pre-
vious keypoint-based models [17]. Furthermore, we can
leverage Contour-Pose in place of keypoints for image-
keypoint-fusion modeling, similar to the setup of Skeleton-
Gait++ [15], and achieve new State-of-The-Art results. This
further demonstrates the effectiveness of our proposed rep-
resentation. In summary, our contributions are as follows:

1. We propose a novel gait representation, called Contour-
Pose, which augments pose keypoints with contour
points extracted from silhouettes; this representation
contains rich information, is compact in size, and can
improve current keypoint-based gait recognition meth-
ods.

2. We propose a novel gait recognition method, called
GaitContour, which leverages Contour-Pose and a
Transformer-based design; GaitContour processes
Contour-Pose in a local-to-global fashion, which
maximizes efficiency.

3. We evaluate our novel gait representation and recogni-
tion method over several large-scale datasets, and find
significant performance and efficiency improvements
compared to previous SOTA methods both in keypoint-
only and fusion scenarios.
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2. Related Works
2.1. Gait Representation

In past decades, researchers have used a variety of repre-
sentations to capture human gait motion, including RGB
images [26, 50], binary masks/silhouettes [8, 16, 30], op-
tical flow images [12, 23, 24], 2D skeleton/pose key-
points [17, 41, 42, 49], and gait-oriented templates, like Gait
Energy Image(GEI) [21], Gait History Image [5], etc. In re-
cent years, novel gait representations have also emerged, in
the form of Li-DAR pointcloud [38], 3D mesh [26, 51], and
event stream cameras [46]; but these representations are dif-
ficult to compute, and consequently, datasets are limited in
scale. The current datasets and methods are mainly based
on images and keypoints, which are the focus of this work.

2.2. Keypoint-based Gait Recognition

Keypoint-based methods are typically designed to predict
identities based on 2D pose keypoints across many frames.
These methods utilize semantic positions, e.g., knees and
wrists, along with their spatial and temporal connections
as inputs. By distilling images into semantically meaning-
ful points, keypoint-based methods can be more robust to
noisy factors such as different clothing and self-occlusion.
GaitGraph [42] and its successor GaitGraph2 [41] treat
pose keypoints as a graph and employ a Graph Convolu-
tional Network (GCN) to extract features. GaitTR [49]
and GaitMixer [34] capture the global temporal and spa-
tial relationship through a transformer-like [44] architec-
ture. GPGait [17] is based on a Part-Aware Graph Convo-
lutional Network (PAGCN) to explore the keypoint repre-
sentation under cross-domain settings. [18] applies physics-
augmented autoencoder to distill physics knowledge into
gait recognition. Even though keypoints perform well in
other motion-related tasks such as action recognition [48],
they have lower performance in gait recognition compared
to image-based methods; but they are generally much faster
and more efficient because of sparser inputs.

2.3. Image and Fusion-based Gait Recognition

The human silhouette is a mainstream representation used
in current image-based recognition methods, typically
based on Convolutional Neural Networks (CNNs). Specifi-
cally, GaitGL [30] improves the quality of embeddings fur-
ther by aggregating both local and global descriptors to cap-
ture local details and contextual relations. Recent works
have explored different backbones, e.g., GaitBase [14],
DeepGaitV2 [13], to achieve higher performance across
diverse datasets, especially in outdoor unconstrained sce-
narios, e.g., GREW [51]. Recently, SkeletonGait [15]
transferred the keypoints into a skeleton map, so that a
large feature extraction model can be employed, achiev-
ing higher performance. Comparatively, image-based meth-

ods take longer to process, e.g. 102ms/sequence for Deep-
GaitV2 [13], as they perform convolution operations at ev-
ery pixel of the sequence, and consist of many layers.

Given the unique characteristics inherent to each modal-
ity, several works focus on fusing the inputs. Castro et
al. [7] fuse depth map, gray image and optical flow through
CNNs to perform gait recognition. DME [19] incorporates
RGB images and silhouettes, enriching the feature space ex-
pression. SMPLGait [51] integrates 2D and 3D modalities,
i.e. silhouette and human mesh, in feature spaces, which
have been shown to improve performance. Bifusion [33]
and MMGaitFormer [10] fuse silhouette and pose informa-
tion, employing concatenation and cross attention respec-
tively. These methods primarily concentrate on fusing the
modalities in feature spaces, as the extraction of different
modalities involves multiple isolated backbones.

3. Method
3.1. Contour-Pose

Inspired by previous works that attempt to combine the
body shape and pose in the feature space [10, 33], we look
at a more principled approach to extract body shape fea-
tures without any neural networks to design keypoint-based
method with more representation fidelity. Ideally, this novel
representation should have the following properties:
• Information Preservation: The representation should

have minimal information loss. i.e., the original signals
can be restored from the representation.

• Compactness: The representation should be concise, such
that its downstream processing is efficient.

• Temporal Consistency: The representation should have
consistent ordering across frames.
Pose keypoints are very compact, but do not contain

enough information to reconstruct the silhouettes; silhou-
ettes contain more information, but are not as compact. To
this end, we propose Contour-Pose, which compresses a
silhouette to a series of contour points to augment pose
keypoints. The contour points at sufficient density preserve
most information in a mask, while being compact. The pro-
cess to produce Contour-Pose is demonstrated in Fig. 3, and
is defined formally next.

Suppose we have a subject’s silhouette S and pose P
across T frames:

S = [st ∈ RH×W ]Tt=1,P = [pt ∈ RV×2]Tt=1, (1)

where H,W and V represent frame height, width, and the
number of keypoints. For each frame, pose keypoints con-
sist of V nodes [(x1, y1), ...(xV , yV )] in 2D, and E edges
between them, which are commonly defined [42, 49].

We hypothesize that a significant portion of the useful
information in st lies on edges, as similar ideas have been
examined before [2, 29, 45]. Instead of using an edge image
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Figure 2. (a) An Overview of GaitContour. The Contour-Pose is partitioned into five regions, i.e. head, left arm, right arm, left leg, and
right leg. Local-CPT extracts features from each region separately. GaitContour combines these local features into an identity embedding
through a Global Pose-Feature Transformer. This local-to-global design enhances both efficiency and effectiveness for GaitContour. (b)
The structure of the Temporal Transformer Layer. It extracts the spatiotemporal correlation between each point, serving as a basic
block for Local-CPT and Global-PFT.

Figure 3. The construction of Contour-Pose. The pose is combined
with the contour points sampled from the silhouette edge. In par-
ticular, contour points are sampled based on their distances from
neighborhood poses. As shown in the zoomed area, Contour-Pose
is the n nearby contour points from each pose with connections.

as previous works [29], we sample the points on it, lead-
ing to a more compact representation to describe the body
shape. To this end, we employ popular contour approxi-
mation methods [6, 43] to 1). compute the silhouette edge
points, and 2). approximate the edge with a lower number
of contour points ct. In practice, 300+ points are extracted
on the contour of st.

Although the approximated contour compactly contains
the silhouette information, in practice, we find that con-
tour points alone do not yield good performance with cur-
rent keypoint-based gait recognition methods [42, 49]. This
is likely due to the lack of temporal consistency in con-
tour point approximation, where the points in neighboring
frames do not have the same semantic meaning and may ar-
bitrarily shift based on the approximation algorithm. This
consistency helps to build a stable graph to describe the
walking pattern.

To establish consistent connections among frames,
we draw inspiration from the blending skin process in

SMPL [31], where the skin vertices are controlled by the
joint positions. We treat the contour and pose points as anal-
ogous to skin and joints in 2D, leveraging pose keypoints as
a semantic guide to refine contour point selection. For each
pose point in pt, we select n nearby contour points to form
a connected graph. To ensure consistency, we arrange the
contour points associated with each pose keypoint in clock-
wise order. The merged contour and pose keypoints, named
Contour-Pose, are defined as follows:

CP = [cpt ∈ R(V×n+V )×2]Tt=1. (2)

As demonstrated in Fig. 3, Contour-Pose combines the
semantic information expressed in poses and the body shape
information expressed by silhouettes. By directly apply-
ing Contour-Pose on current keypoint-based methods, e.g.,
GaitTR [49], we can already observe significant improve-
ments in gait recognition performances without any archi-
tectural modification, as shown in Table 4 (d-e). For more
details on the construction of Contour-Pose, please refer to
the supplemental material.

3.2. GaitContour

Contour-Pose already improves the baseline gait recogni-
tion performance. We note that Transformer-based methods
like GaitTR [49] compute attention in O(n2) complexity
with respect to the input points. This leads to significantly
more operations, as Contour-Pose has V × n additional
points on top of pose keypoints. We propose GaitContour,
an efficient transformer-based gait recognition model devel-
oped for Contour-Pose. As shown in Fig. 2 (a), GaitContour
first computes local features in five defined regions with a
Local Contour-Pose Transformer (Local-CPT); it then ag-
gregates local features and computes a global representa-
tion with a Global Pose-Feature Transformer (Global-PFT).
Such a local-to-global design allows each transformer to fo-
cus on relevant points and features, thereby significantly
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improving efficiency and performance. Both Local-CPT
and Global-PFT are built using the Temporal Transformer
Layer.

3.2.1 Temporal Transformer Layer

To compute the spatiotemporal correlation between each
point, we utilize a Temporal Transformer Layer (TTL) as
shown in Fig. 2 (b). It captures the points’ movement with
time through Temporal Aggregation (TA) and uses a self-
attention mechanism to extract the relations between each
point. Each layer’s operations can be described and formu-
lated as follows:

ẑl = zl−1 + TA(zl−1),

zl = BN(Conv(MHA(BN(ẑl)))) + ẑl + zl−1,
(3)

where ẑl, zl ∈ RT×J×C are the output features of TA and
layer l, respectively; T, J, C denotes the frame number, the
number of points/tokens and the channel dimension. We
follow [49] to use convolutions along the time axis to reason
about temporal information in the TA module. This tempo-
ral transformer structure is commonly used [3, 35, 49], and
is shown to be effective for gait analysis.

3.2.2 Local Contour-Pose Transformer

Contour points in CP are defined in relationship to pose
keypoints and represent more detailed body-shape informa-
tion; To leverage this relationship, we propose to first com-
pute local features based on contour points and keypoints.
It stands to reason that local details, e.g., contour shapes in
the left foot, bear a minor correlation to contour points sur-
rounding the head. Guided by this hypothesis, we define
five body regions based on keypoints - head, left arm, right
arm, left leg, and right leg, defined as:

CPr ∈ RT×(3+3n)×2,∀r ∈ {h, la, ra, ll, rl}, (4)

each region contains 3 keypoints and each keypoint is asso-
ciated with n contour points, a total of (3 + 3n) points.

A Local Contour-Pose Transformer (Local-CPT) is a
transformer architecture built upon TTL. Denoting every
TTL block within Local-CPT to be Fi, the forward process
of Local-CPT can be described as follows:

Fr = FN ◦ FN−1 ◦ ...F2(F1(γ(CPr))⊕ lr)), (5)
F p
r = AvgPool(Fr, n+ 1), (6)

where ◦ represents operate in series, lr ∈ R1×C1 is a learn-
able regional embedding indicating the current Contour-
Pose region, Fr ∈ RT×(3+3n)×CN is the output feature
vector for every region, Ci is the channel size of Fi and γ is
a sinusoidal embedding function. The embedding function

Table 1. The statistics of four large-scale datasets
Dataset Id Seq Frames/Seq Distractor

OUMVLP 10,307 288,696 24.88 ✗
GREW 26,345 128,671 109.92 ✓
Gait3D 4,000 25,309 129.57 ✗

SUSTech 1050 25,216 91.61 ✗
CCPG 200 16,282 107.14 ✗
BRIAR 1,216 84,913 1943.25 ✓

allows us to map the 2D positions to a higher dimensional
Fourier space which has been shown to help in improved
learning [32, 40]. Note that we use a single Local-CPT to
process all regional Contour-Pose components, and provide
lr after F1 as the region indicator. The features in Fr are
then averaged pooled with (n+1) stride to F p

r ∈ RT×3×CN

to condense the point-wise dimension. Based on this de-
sign, every layer in Local-CPT has a complexity of O(n

2

5 )
by focusing on local parts.

3.2.3 Global Pose-Feature Transformer

Once the regional features are computed, a Global Pose-
Feature Transformer (Global-PFT) is used to compute a
global ID representation. Similar to Local-CPT, Global-
PFT is built on TTL, where each layer is denoted as Mi.
The forward process for Global-PFT can defined as follows:

Ig = AvgPool(MX ◦MX−1 ◦ ...M1(F
p), V ), (7)

F p = F p
h ⊕ F p

la ⊕ F p
ra ⊕ F p

ll ⊕ F p
rl, (8)

where F p ∈ RT×15×CN is the concatenated feature of
regional features in F p

r ; Global-PFT takes F p and to ob-
tain the subject’s identification embedding in Ig ∈ R1×SX ,
where Si is the channel size of Mi.

During training, triplet loss [22] is applied to maximize
the distance of representations from different identities and
minimize the ones from the same identity.

4. Experiments

4.1. Datasets and Metrics

We evaluate our method on several large scale datasets, i.e.
OUMVLP [1], CCPG [25], SUSTech1K [38], GREW [52],
Gait3D [51] and BRIAR [9]. The first three are constrained
datasets and the rest are unconstrained datasets to assess
the performance of challenging real-world scenarios. The
statistics of these datasets are in Table 1. One highlight of
BRIAR is that its video clips are of much longer duration,
at around 1900 frames per sequence, compared to around
110 frames per sequence for other gait datasets. BRIAR
also has 70 sequences per identity, compared to datasets
such as OUMVLP, which has 30 sequences per identity.
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Table 2. Quantitative comparison of keypoint-based gait recognition methods across six large scale datasets. The best performers are
colored, and the second best methods are underlined. GaitTR has a similar compute cost but a lower performance. GaitContour outperforms
GPGait with a smaller template size and compute cost. The Ver represents TAR@FAR=10−3.

Method Params(M) FLOPs(G) Template size
Testing Datasets

OUMVLP GREW Gait3D BRIAR SUSTech1K CCPG Full
R1 R1 R5 R1 R5 R1 R5 Ver R1 R5 R1 mAP

GaitGraph2 [41] 0.76 0.58 1× 384 62.1 33.5 - 11.1 - 6.8 16.2 1.5 18.6 40.2 5.0 2.4
GaitTR [49] 0.55 0.98 1× 256 39.8 48.6 65.5 7.2 16.4 42.2 68.7 30.5 30.8 56.0 24.3 9.7
GPGait [17] 7.93 3.38 19× 256 59.1 57.0 68.5 22.4 35.9 38.0 56.6 32.0 47.4 70.6 54.7 25.8

GaitContour(Ours) 0.66 1.41 1× 256 60.8 57.4 72.9 25.3 41.3 55.2 74.6 40.0 55.5 72.3 57.8 27.1

This abundance of temporal information allows us to ex-
plore trade-offs in real applications, e.g., when image-based
methods become too computationally expensive on inputs
with a large number of frames.
Evaluation Metric For OUMVLP, Gait3D, SUSTech1K
and GREW, rank retrieval is employed to evaluate gait
recognition performance. For the BRIAR dataset, we also
measure performance using Receiver-Operating Character-
istics (ROC) curves. For different gait recognition algo-
rithms, Additionally, we compare the number of parame-
ters, Floating Point Operations (FLOPs), and output tem-
plate size to understand their efficiency in performance and
storage. Note that, we only account for the parameters and
FLOPs of the encoder. The implementation details are pro-
vided in the supplementary material section.

4.2. Quantitative Evaluation

As summarized in Table 2, we compare GaitContour against
other SOTA keypoint-based gait recognition algorithms.
All evaluation results other than those for BRIAR come
from the respective original papers. GaitContour performs
significantly better compared to current keypoint-based
methods across most datasets. In particular, GaitTR [49]
and GaitContour both use a Transformer-based architecture.
Despite the 10X larger input size for Contour-Pose, Gait-
Contour is similar to GaitTR [49] in model size, FLOPs, and
template size, while achieving much better performances
across all datasets. Compared to GPGait [17], which is
12/19X larger in model/template size, GaitContour achieves
better results. This demonstrates both the rich information
in our novel input representation and the efficiency of pro-
cessing it with GaitContour.

4.3. Ablation Study

GaitContour architecture design. In this work, we pro-
posed three key design concepts: regional embedding, a
shared Local-CPT for different regions, and sinusoidal em-
bedding. As shown in Table 3, we perform several abla-
tion studies to confirm their usefulness. We find that re-
gional embedding and sinusoidal embedding improve per-
formance by 1.5% and 1.9% respectively; when both tech-
niques are used together, we achieve a 3.9% improvement

Table 3. Ablation study on region embedding (Region), a shared
Local-CPT (Shared CPT), and sinusoidal embedding (Sin). The
results are shown using rank retrieval, mean Average Preci-
sion(mAP) and mean Inverse Negative Penalty (mINP) with model
size. Results are based on Gait3D [51].

Region Shared CPT Sin Rank-1 Rank-5 mAP mINP Param(M)

✓ 21.42 37.23 16.38 7.45 0.56
✓ ✓ 23.32 40.74 17.48 7.65 0.56

✓ ✓ 22.92 39.24 17.05 8.30 0.66
✓ ✓ 23.12 40.84 17.42 7.61 1.78
✓ ✓ ✓ 25.32 41.34 18.62 8.34 0.66

Table 4. Comparison among different keypoint-based inputs
and Contour-Pose applied on various keypoint-based methods.
Contour-PoseNA stands for a Contour-Pose configuration with no
clock-wise arrangement.

Index Method Representation FLOPs(G) Gait3D
(a) GaitTR [49] Pose (17) 0.98 7.2
(b) GaitTR [49] Contour (112) 1.81 4.5
(c) GaitTR [49] Contour-Pose (165) 2.83 19.3
(d) GaitGraph [42] Contour-Pose (165) 1.97 8.7
(e) GaitGraph2 [41] Contour-Pose (165) 8.37 16.2
(f) GaitContour Contour-PoseNA (165) 1.41 13.9
(g) GaitContour Contour-Pose (165) 1.41 25.3

Table 5. Comparison under the small template size or model size.
Model Parameters(M) FLOPs(G) Gait3D GREW

GaitGL [30] 11.19 58.55 29.7 47.3
GaitBase [14] 7.30 9.45 64.6 60.1
GaitGLtiny 0.77 1.45 12.2 17.4

GaitBasetiny 0.72 1.62 18.2 3.6
GaitContour 0.66 1.41 25.3 57.4

(a) Comparison under comparable model size

Model Template size Gait3D GREW

GaitBase [14] 16× 256 64.6 60.1
GaitBasesqueeze 1× 256 50.5 40.7

GaitContour 1× 256 25.3 57.4

(b) Comparison under models with the same template size

overall. Furthermore, if we use five individual transform-
ers, with the same structure as Local-CPT, the overall per-
formance degrades by 2.2% and the model size goes up by
1.12M parameters, 269% of a shared Local-CPT. Using a
shared transformer to process all regional information al-
lows more augmentation on the input side and an overall
more performant model.
The effectiveness of Contour-Pose and temporal consis-
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tency. In Table 4, we explore different keypoint-based gait
representations to show the effectiveness of Contour-Pose.
GaitTR [49] is used as the method to benchmark different
inputs based on their performances on the Gait3D dataset.
The vanilla GaitTR (a) achieves an improvement of 7.2%
with pose keypoints. One direct approach to leverage sil-
houette information is to use contour points directly; to this
end, we directly sample 112 contour points to construct a
directed graph, where each contour point has two edge con-
nections to the front and back contour points. This represen-
tation (b) leads to a decrease in performance when applied
to GaitTR. If we use a pose-guided sampling scheme to con-
struct Contour-Pose instead, we see a significant accuracy
improvement on GaitTR from 7.2% to 19.3% (c). We be-
lieve that this improvement comes from an established order
based on pose keypoints across frames, i.e., temporal con-
sistency. We further demonstrate the importance of point
ordering in Contour-Pose by examining the performance of
Contour-PoseNA, where the contour points are not sorted in
a clockwise order. This leads to a significant decrease in
performance from 25.3% to 13.9% on GaitContour (f).

The effect of template size. Template size is the sub-
ject identity embedding size produced by the gait recogni-
tion model. Larger templates can contain more informa-
tion but are more expensive to store. In real applications,
a vast number of identity embeddings needs to be stored
and compared, making the template size a key considera-
tion. As shown in Table 5, we examine the performance
of GaitBase [14] with an equivalent template size to Gait-
Contour. We note that the GaitBase [14] backbone is un-
changed; instead, only the output template size is reduced
from 16 × 256 to 1 × 256, noted as GaitBasesqueeze. De-
spite its significantly larger model size, GaitBase’s perfor-
mance drops from 64.6% to 50.5% on Gait3D and 60.1%
to 40.7% on GREW with a constrained template size. On
the GREW dataset, GaitContour even achieves 16.7% bet-
ter performance compared to GaitBase with the same tem-
plate size. This demonstrates the necessity for image-based
methods to have a large template size to achieve good per-
formance, and the efficiency of GaitContour, an effective
way to concentrate sequences to a small feature size.

The effect of model size on performance. The size and
computational cost of a model are also crucial aspects for
real deployment. Larger models are better function ap-
proximators, but are more costly to train and infer; this
is a non-trivial issue particularly in gait recognition when
multi-frame inputs can be very high in dimensionality.
Image-based methods generally construct larger models, as
shown in Table 6. If we reduce the model size for these
image-based models, as shown in Table 5, to be compa-
rable to GaitContour, their performances significantly de-
grade. To maintain the original backbone structures, we
only reduce the channel numbers. Interestingly, GaitBase’s

performance dropped from 60.1% to 3.6% on the GREW
dataset, demonstrating these large-scale architectures can-
not be straightforwardly reduced to achieve a balance be-
tween efficiency and performance.

(a) The changes of performance and
FLOPs with different temporal windows.
GaitContour is significantly more efficient
and has better performance.

(b) The changes of performance with
different temporal diversity. GaitCon-
tour needs more temporal diversity during
training to achieve good performance.

Figure 4. The effect of temporal information during training. Re-
sults are evaluated on the BRIAR dataset.

4.4. Fusion-based Comparison with Contour-Pose

We further analyze the utility of Contour-Pose in fusion-
based gait recognition models. Fusion-based gait recogni-
tion [15, 33] leverages both silhouette and key-point rep-
resentations to improve recognition performances. To this
end, we propose a fusion method called Contour-Pose++,
which uses a large backbone model in similar fashion to
SkeletonGait++ [15]. Specifically, we map Contour-Pose
to a 2D skeletonmap, extracting features from the skeleton-
map and silhouette image using two CNN-based networks.
These features are fused in a large backbone, i.e. Deep-
GaitV2. Please refer to the supplemental material for more
specific architecture design.

As shown in Table 6, Contour-Pose++ consistently out-
performs other image or fusion-based methods on five
benchmark datasets. Notably, even though SkeletonGait++
includes a silhouette branch incorporating body shape in-
formation with pose keypoints, Contour-Pose++ yields sig-
nificant improvements, e.g., 3% and 2% on Gait3D and
SUSTech1. This demonstrates the effectiveness of Contour-
Pose in encoding discriminative gait features.

4.5. Analysis on Temporal Information

In principle, gait recognition explores temporal patterns to
perform biometrics; however, this aspect of gait recognition
has seldom been analyzed due to the frame number limita-
tion in popular datasets. As we demonstrate in Fig. 4a, for
image-based and keypoint-based methods, models trained
with a larger temporal window size can obtain better per-
formance. This is particularly useful if the dataset has
long-duration sequences, e.g., in BRIAR. Training with
more frames requires more computation, especially when
the model itself is already large. As we showed in Fig. 4a,
large models like GaitBase not only have more FLOPs than

7



Table 6. Quantitative comparison of image and fusion-based gait recognition methods across six large scale datasets. The best performers
are colored, and the second best methods are underlined. The Ver represents TAR@FAR=10−3.

Method Params(M) FLOPs(G) Template size
Testing Datasets

OUMVLP GREW Gait3D BRIAR SUSTech1K CCPG Full
R1 R1 R5 R1 R5 R1 R5 Ver R1 R5 R1 mAP

GaitSet [8] 6.31 12.91 62× 256 87.1 46.3 63.6 36.7 58.3 39.4 60.2 30.5 65.0 84.8 77.7 46.4
GaitPart [16] 4.84 7.93 30× 128 88.5 44.0 60.7 28.2 47.6 41.4 61.5 32.3 59.2 80.8 77.8 45.5
GaitBase [14] 7.30 9.45 16× 256 90.8 60.1 - 64.6 74.7 42.4 63.5 32.2 76.1 89.4 - -
GaitGL [30] 11.19 58.55 64× 256 89.7 47.3 64.4 29.7 48.5 52.0 70.7 39.8 63.1 82.8 69.1 27.0

DeepGaitV2 [13] 13.20 569.00 16× 256 91.9 77.7 88.9 74.4 88.0 52.2 70.2 46.5 77.4 90.2 90.3 62.0
BiFusion [33] 7.56 8.26 16× 256 89.9 45.5 64.5 30.8 49.9 48.5 63.4 36.5 62.1 83.4 77.5 46.7

SkeletonGait++ [15] 13.27 91.79 16× 256 - 85.8 92.6 77.6 89.4 57.9 76.6 51.5 81.3 95.5 90.1 63.6
Contour-Pose++ 13.27 91.79 16× 256 - 86.1 93.4 79.6 89.8 59.7 77.6 53.1 83.3 95.8 92.1 67.1

GaitContour, but a steeper rate at which their FLOPs in-
crease given more frames. In fact, GaitContour uses fewer
FLOPs with a 100-frame input compared to a 30-frame to
GaitBase. The performance gap between GaitContour and
GaitBase also increases as the temporal window size goes
down, likely because GaitBase overfits more on smaller de-
tails due to its dense inputs and large model.

From Table 2 and Table 6, we observe a smaller perfor-
mance gap between keypoint-based and image-based meth-
ods on the BRIAR dataset compared to other datasets.
This is a key difference between the BRIAR dataset
and other benchmark sets with few frames. The abun-
dance of temporal information in the BRIAR dataset en-
hances keypoint-based method performance. Keypoint-
based methods can only observe compressed spatial infor-
mation, making it challenging to extract discriminative sub-
ject features. Therefore, more temporal diversity is re-
quired during the training phase to build robust subject
features. The substantial volume of temporal information
in the BRIAR dataset allows keypoint-based methods to
extract finer differences between subjects, achieving even
higher performance than some image-based methods. The
performance gap observed in GREW and Gait3D further
supports this assumption. We conduct experiments on the
BRIAR dataset to validate this finding. As shown in Fig. 4b,
when less temporal diversity is employed during training,
the performance of GaitContour drops more significantly
than DeepGaitV2, demonstrating that the keypoint-based
methods need more temporal diversity during training. Pre-
vious public datasets, such as GREW, have limited tempo-
ral diversity—only 13.3% of that in BRIAR—leading to the
lower performance of keypoint-based methods.

4.6. Discussion

Limitation and Prospect Regarding the potential draw-
backs of Contour-Pose, occlusion and limited field of view
can result in imperfect silhouettes, particularly in uncon-
trolled environments. Such imperfections can pose chal-
lenges during training, as boundaries in adjacent frames
may vary significantly. Currently, we apply point-wise aug-

mentation to mitigate this problem, as we did for silhou-
ettes. We believe GaitContour still holds great potential.
While there remains a performance gap between GaitCon-
tour and image-based methods, GaitContour demonstrates
effective performance when there is abundant temporal di-
versity during training. Furthermore, due to its lightweight
and efficient nature, GaitContour can serve as a plug-in
module for any image-based method. Based on previ-
ous works [10, 33], the combination of keypoint-based and
image-based methods consistently improves the overall per-
formance.

5. Conclusion

In this work, we propose a novel gait representation called
Contour-Pose and a gait recognition model, GaitContour,
that leverages the advantages of Contour-Pose to achieve
significant improvements in performance and efficiency.
Contour-Pose uses a pose-guided sampling process on a
silhouette, which approximates contour points from silhou-
ette edges and sample points based on distances from pose
keypoints. This representation efficiently preserves infor-
mation from both silhouette and pose keypoints, and is
temporally consistent. We can observe significant perfor-
mance improvements when Contour-Pose is applied to var-
ious keypoint-based recognition models. We further de-
velop GaitContour, which is tailored to analyze Contour-
Pose. GaitContour contains two components: Local-CPT,
and Gloabl-PFT. Local-CPT analyzes Contour-Pose at five
different local regions and aggregates the outputs to a sparse
global feature. Global-PFT then generates a subject iden-
tity embedding based on this global feature. Compared to
a conventional Transformer, this local-to-global design sig-
nificantly improves the model efficiency. Our experiments
show that GaitContour is on par with SOTA image-based
methods on a practical dataset, while maintaining efficiency
in model size, template size, and FLOPs to that of keypoint-
based methods, thereby making gait recognition much more
practical for real applications.
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de la Blanca, N.: Multimodal feature fusion for cnn-
based gait recognition: an empirical comparison. Neu-
ral Computing and Applications 32, 14173–14193
(2020) 3

[8] Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: Re-
garding gait as a set for cross-view gait recognition.
In: Proceedings of the AAAI conference on artificial
intelligence. vol. 33, pp. 8126–8133 (2019) 3, 8

[9] Cornett, D., Brogan, J., Barber, N., Aykac, D., Baird,
S., Burchfield, N., Dukes, C., Duncan, A., Ferrell, R.,
Goddard, J., et al.: Expanding accurate person recog-
nition to new altitudes and ranges: The briar dataset.
In: Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision. pp. 593–
602 (2023) 5

[10] Cui, Y., Kang, Y.: Multi-modal gait recognition via
effective spatial-temporal feature fusion. In: Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 17949–17957
(2023) 3, 8

[11] Del Din, S., Elshehabi, M., Galna, B., Hobert, M.A.,
Warmerdam, E., Suenkel, U., Brockmann, K., Met-
zger, F., Hansen, C., Berg, D., et al.: Gait analysis

9



with wearables predicts conversion to parkinson dis-
ease. Annals of neurology 86(3), 357–367 (2019) 1

[12] Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazir-
bas, C., Golkov, V., van der Smagt, P., Cremers, D.,
Brox, T.: Flownet: Learning optical flow with con-
volutional networks. In: Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV)
(December 2015) 3

[13] Fan, C., Hou, S., Huang, Y., Yu, S.: Exploring deep
models for practical gait recognition. arXiv preprint
arXiv:2303.03301 (2023) 3, 8

[14] Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.:
Opengait: Revisiting gait recognition towards better
practicality. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
pp. 9707–9716 (2023) 1, 3, 6, 7, 8

[15] Fan, C., Ma, J., Jin, D., Shen, C., Yu, S.: Skeletongait:
Gait recognition using skeleton maps. arXiv preprint
arXiv:2311.13444 (2023) 2, 3, 7, 8

[16] Fan, C., Peng, Y., Cao, C., Liu, X., Hou, S., Chi,
J., Huang, Y., Li, Q., He, Z.: Gaitpart: Temporal
part-based model for gait recognition. In: Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 14225–14233 (2020) 3, 8

[17] Fu, Y., Meng, S., Hou, S., Hu, X., Huang, Y.: Gp-
gait: Generalized pose-based gait recognition. arXiv
preprint arXiv:2303.05234 (2023) 1, 2, 3, 6

[18] Guo, H., Ji, Q.: Physics-augmented autoencoder for
3d skeleton-based gait recognition. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision. pp. 19627–19638 (2023) 3

[19] Guo, Y., Peng, C., Lau, C.P., Chellappa, R.: Multi-
modal human authentication using silhouettes, gait
and rgb. In: 2023 IEEE 17th International Conference
on Automatic Face and Gesture Recognition (FG).
pp. 1–7. IEEE (2023) 3

[20] Hadid, A., Ghahramani, M., Kellokumpu, V.,
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